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ABSTRACT

"The chief purpose of this reDort is to provide an i itroduction
to pseudo-noise modulation functions and to describe those proper-
ties that make their use in radar systems desirable. B,:ause of
the interests of these laboratories, characteristics applicable to
fuzes are emphasized.

The applicability and usefulness of various pseudo-noise modu-
lation functions in radar systems is discussed. The use of the m-
sequence in a complete radar system is described, and an extensive
bibliography of other applications to radar systems is also given.
A short •oction containing classified information on jamming of
pseudo-noise modulated radars, with bibliography, is issued as a
supplement to this report.

This report is essentially a survey, and the body of the report
therefore contains little new material. However, the three appen-
dices, on mesh relations for sequences with tqo-level autocorrelation,
on the shift-and-add relations, and on filter integration of m-sequences,
present material that to the author's knowledge is original.

1. INTRODUCTION

During the past decade, a new class of modulation functions has
been developed and applied to communication, guidance, and radar sys-
tems. Called pseudo-noise or pseudo-random, these functions are dig-
ital in nature. Tn the application of these functions, a t.ansmitted
signal having E small number of modulation states, usually two, is
employed. The signal is then alternated between the states as pre-
scribed by the digital code.

Compared with conventional pulse or CW radar, radar systems using
these functions may exhibit new, and, in many ways, better performance
characteristics such as

(a) large average- to peak-power ratio
(b) unamabiguous measurement of range to large ranges
(c) unambiguous measurement of velocity (Doppler frequency) to

high velocities
(d) fine range resolution
(e) fine velocity resolution
(f) resistance to both sophisticated and power jamming
(g) a signal difficult for an enemy to detect because cf its

peak-free, noisc-like spectrum.

Ordinary CW radar is completely satisfac'ory with respect to
average power and measurement of velocity but neither resolves nor
measures target range satisfactorily. On the other hand. a pulse
radar using short pulses and a low duty cycle elim. nates the rang-
ing problem but sacrifices average power and the unambiguous



measurement of velocity. The velocity measurement becomes ambiguous
because many short pulses must be used, and Doppler must be deter-
mined through a pulse-to-pulse phase-shift measurement instead of
through an intrapulse freque~icy measurement. In the pulse-to-pulse
method, the phase-shift measurement is unambiguous only from -7 -o

+r-; hence, the magnitude of the largest unambig, ous Doppler frequen-
cy is one half of the pulse repetition frequency. The result is
that only low frequencieI ,.au be measured unarbiguously.

That digital modulation functions can mitigate the disadvantages
of pulse radar to some extent may be illustrated as follows. Assume

that the waveform may be transmitted in one of two modulation states,
Ml or M2, which may be phase states, frequency states, amplitude
states, or, in the limit, off-on states (M2 = MO). For a system
using phase modulation, the more usual case, the waveform in state
Ml is illustrated in figure l(a); in states M1 and M2, in figure l(b).
In this case, M1 and M2 differ by 180 deg in phase.

The unambiguous range of the pulse radar may now be increased
by transmitting the successive pulses in either state M1 or M2 as
p)rescribed by a binary sequence, cither specified or random. If the
sequence is periodic with a period of L digits, the unambiguous range
has been extended by a factor of L. Unfortunately, the integration
time has been extended similarly. If the sequence is aperiodic, a
more complicated situation arises, to be treated later.

If, instead of desiring to increase the unambiguous range, we
desire to increase the range resolution, and, if the change of state

can be accomplished sufficiently rapidly, then we may code each pulse
with a binary sequence (fig. l(c)). In this case, the range resolu-
tion and bandwidth are both increased by a factor L.

Alternately, if the average power is to be increased, pulses
modulated as in figure 1(b) may be concatenated as in figure l(d).
The limit of such a concatenation is modulated CV'. In addition, it
can • shown that the velocity resolution is best, in a certain sense,
if angle-modulaied CW is used (-ref 16, p. 24).

If immunity to countermeasure is prime, thenan aperiodic sequence
or one of long period and complicated structure might be employed.
With such a sequencz,, it will be difficult for a jammer to produce an
"advanced" wavefor-m; i.e., one designed to deceive the receiver by
falsely registering as a 'ar target, because the sequence is theoret-
ically or practically unpre,ý.table. In this case, of course, the

receiver would be much more complicated.

Allhough i: would be desirable to hide the modulated signal in
a peak-free, noise-like spectrum, it is usually not possible to do so
in a radar system, because the transmitted power is so large as to be
easily recognized even with substantial spectrum spreading. The
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technique may he useful, however, in a secret communications system
where power may he minimized. Modulation of the message by a binary
seqLence i. then a form of scrambling that spreads the spectrum
(fig. 2(a)). If the receiver can remove the binary modulation

through knowledge of the sequence, the received spectrum (message)
is collapsed (fig. 2(b)). At the same time, any CW present, which
may be CW jamming, is spread, while uncorrelated noise is not col-
lapsed. The message may then be separated by a narrow-band filter.

This illustration of the application of various modulation func-
tions to pulse radar has thus shown how certain disadvantages of con-
ventional pulse radar may be alternattvely alleviated, but not with-
out obtaining certain other disadvantaget. The illustration implies,
however, that by proper choice of the modulation function, it may be
possible to obtain a number of advantages simultaneously without ob-
taining serious disadvantages. The objective of this report is to
examine the various modulation functions with this in mind, to weight
their relative advantages, and ideally, to arrive at a best modula-
tion function.

2. THE RADAR RECEIVER AND TRANSMITTED WAVEFORM

The most that can be required of a radar receiver is that it
compute a probability density for a target at each range associated
with return delays T and each velocity associated with Doppler fre-
quencies 0.i Assuming a single point-target and Gaussian noise, it
has been shown (ref 2,3,4) that no receiver can extract more informa-
tion from the received signal than a correlation (matched-filter)
receiver. For a transmitted waveform w(t), the delayed, Doppler-shifted
return is

r(t) = w(t - T) e2Wiot + n(t) (1)

where n(t) represents additive noise. A correlation receiver is one
that computes the envelope

env C,) Ir(,I

=12 2 r*(t) w(t - T) e277it dtl (2)

' If the radar system becomes ambiguous in T.and/or I, no attempt
is made to resolve these ambiguities. Therefore, sufficiently
strong returns from the ambiguous (TA) region will be falsely inter-
preted as returns from the unambiguous region and their probabilities
so computed.
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where I is the interval of integration, i.e., the conjugated
signal is multiplied by a delayed, frequency-shifted reference,

integrated, and the envelope taken (to dtscard rapid fluctua-
tions in C(T,O) that carry no information). Various receivers
of this type have been designed' and are described in the refer-
ences.

Although a correlation receiver extracts all available in-
formation from a given signal, some transmitted signals have
more suitable characteristics than others. The function that
measures the quitability of a waveform in this respect is the

signal component of f(T,J) which, after a change of origin, is
Woodward's famous ambiguihy ft.nction

X(T,J) = w(t) w*(t - T) e2Ti t dt (3).

I

For mosat radar purposes, a good waveform w(t) is one for which
the envelope IX(T,J)I of X(T,J) has a sharp peak at the oribin
and is small elsewhere.

We expect to use a carrier modulated by a low-pass modula-

tion function:

w(t) = x(t) e 27ilct (4)

Then,

IX(t,#) =f x(Z) x*(t - T) e2ri t dtl (5)

and so the pertinent ambiguity function is that of the modulation
waveform.

Along the T axis, IXi is just the envelope of the autocorre-
lation function of x(t):

IX(T,O)i = If x(t) x*(t - T) dtl (5)

This kind of correlation receiver is to be distin~uished from
another class of distance-measuring correlation pystems that does
not delay the reference signal, and that essentially t*4es the
magnitude of env C(T,O) at the origia as a measure of the nearness

of the peak of env C(r,4) to ý '- rtilr. Such a system is described
by B.M Horro-, "½oi~e-Modulated Distarhce Me.i-iing Systems," IRE
Proceedings, Vol 47, 1959, pp 821-828.
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For certain important modulations, the Ambiguity function is
much better (i.e., smaller) along the - axis than elsewhere In

the plane. The modulation period (and the integration interval)
is made shorter than the shortest expected Doppler period in -_*rder
to guarantee that correlation of the received signal- wit-a.de-
layed but not frequency-shifted signal will give a swall off peak

value.

The ambiguity functions ot common wevefcrms such as pulsed
sine waves and "chirp" signals have been calculated and found to
be far from optimal (ref 3, 4, 30). Except for a few modulations
as yet unexploited in sybtems (ref 7), the study of better modula-
tion functions has been restricted to time-quantized "telegraph
signals" like those in figure 1. Henceforth we wil.l consider only
functions of this type- the modulator chooses among a fixed,
finite numbe. ox modulation states at multiples of a basic time
interval. The modulation waveform will be represented by a se-
quence of complex numbers, each modulation state being symbolized

by one member of Lne sequence.

3. BINARY DIGITAL MODUT.ATION OF PULSE RADAR

To begin with, we will investigate the simplest case of binary
modulation of pulse radar, where there are two modulation states.
It is sometimes convenient to take these as

ak = +1 or -1 (7)

aria at other times as

bk = 0 or 1 (8)

Generally, these will be associated in the order shown above; i.e.,

ak = 1 - 2bk (9)

on those occasions when a change of variable is performed. If
these sequences of ak or bk are associated directly with the modula-
tion waveform via

x(t) = a or >t) = b (0)
k k

kt <, t ::(k ÷ 1
0- - 0

then, the modulations are, respectively, 0 or 180-deg digital phase
.modulation, or on-off digital amplitude modulation. When discus-
sirng the mathematical properties of binarv sequences, however, the
actual form of modulation will be disregarded during the analsi.,



and the above c.hange of variable made whenever it is mathematically
convenieat. Although the only operation between ak's will be or-
dinary multiplication, the bk's wil 1 be either multiplied or sub-

jected to "addition modulo two," whichever happuns to be convenient
to the calculatiou or proof at hand. The latter operation is defined

so that it corresponds to multiplication of the ak's and is symbol-
ized by®:

X + - (0

+ + -0 0 1

-- 1+ 1 0

Multiplication of ± 1 Addition moJulo two of 0,1

that is,

G 0+ = 1 100 (11)

0o@0 0 1 @ 1 (12)

The first class of binarv coden waveforms that we will examine
is exemplificd by figure l(c). DA these, a coded puise is followed
by an off-time longer than the pulse. An investigation of the en-
tire ambiguity function will not be made, since it happens that
the autocorrelation function itsplf (which is the zero-velocity
cross section of the ambiguity function) is not one particula.'ly
suitable with long sequences.

3.1 Coded Words and Phase-Coded Pulses

If the two modulation states M1 and Y2 differ only in
phase, and in that by 180 deg, the coded pulse Js most naturally
represented by a fi..ite sequence, "word" )f a,-'s. The a'itocorre-

A

lation function of a coded word is gvw . by

L-T
Ca(T) = X d k a k+ 4 (13)

k-; 1

where T is a discrete variable, 'r "T -2, -1, 0, 1, 2,.-.;
L is the word length, and the autocorrelation is unnormalized; e.g.,
fo: the coded word (+l, +1, +1, -1, +1), the pulse waveform is

12



and a, = &2 = &3 = a 5 = +1; a 4  -1. Then Ca(l) is computed from
the partial overlap

and is equal to

Sa(1) 1 + I I - 1 = 0 (14)

The autocorrelation function for this pulse is
Ci

S-5-4-3-21 , 1 2 3 4 5

and furthermore, this is iepresentative of the class of coded
words with the best autocorrelation function:

0_or ± I T ±l, ±2, , ±(L - 1) (15)

a aT =0

Unfortunately, the longest krnown such "perfect" word is only
13 digits long. There are no longer ones of odd length (raf 33).
The fxistence of longer perfect words of even length hinges on
the unsolved problem of the existence o* Tlng "perfect" periodic
sequences, which will be mentioned later. Their existence is
considei-d unlikely. Some of the known perfect words are (ref 1)

L Perfect Word

2 +

3 ++ -

4i + + + -Y + 4 - +

5 + + + -+

4 + + +-

+ ++ +- - -+ -+--

There hun been some experimental investigation of "nearly perfect"
words: 1Ca(T,', = 2 , 3 off-peak.

13



3.2 Coded Vowels and On-Off Conded Pulses

If, on the other hand, the t'•o states Ml and M2(=MO)
are on and off, the coded pulse is best represented by a finite
sequence, or "vowel" of bk's. Such pulses have been used in

the Venus ranging exleriment (ref 1, 46, 55). On-off coding was
used because the return was not phase-coherent.

The autocorrelation function for a coded vowel is

L-T

Cb((T) = bb+ (16) a

k=1

i.e., an overlap product analogous to word correlation. The per-
fect autocorrelation in this case is define(1 as

N+l

C(T) (17)

0 or 1, T 0

An example of a perfect vowel is ll001011, few are known.

4. BINARY CODES FOR CW

The case of continuous transmission remains; we now treat
digital coded CW (the conventional but somewhat anon.alous term)
and in the next section restrict the codrs to binary sequences.

Most of the systems built so far employ 0- to 180- deg phase
modulation (PM), although a few use AIM or FU. PM will be assumed
in most cases, and accordingly, the sequences will correspond
directly to the modulation when written in terms of the "k. -Most
sequences considered will be period.k, bu-. first, an aperiodic
sequence with certain advantages will be tretqd.

4.1 The Fair Coin Sequence

If the sequence ak is chosen by flipping a fair coln, it
has the advantage of being unpredictable to the jammer. There is
no possible way to jam it intelligently, and recourse must be made
to brute-force techniques. Sl:ce the sequence is ap-riodic, no
range ambiguities are built it,.

A typical section of a telegraphic modulation function

obtained by actual coin-fliDping appears aE-

It is to tyb noted that the associAtion previously given n eq (9)

(+I -* 0) and (-I -.- +1) does ..ot carry perfect vow-els into perfv(ct

words.

14



X(t)

THEADS i- :

The normalized autocorrelation function of the modulation is

C(T) = T -#00 oo f x(t) x(t+i) dt (18)

-T

The autocorrelation function is zero except for T = 0 because
there are equal numbers of agreements and disagreements between
ak and a T The former contribute +1 to C(,r); and the latter,

-1. In act, an alternate definition of the normalized autocor-
relation function of any ak spquence is

A-D
C (T) =- (19)a A+D

where A is the number of agreements during the period of corre-
lation, and D, the number of disagreements. In the limit of
equation (18), then, it is clear that

I T T=.O

C (T) = ITI >1 (20)

for the random sequence

Colt)

Now, this is the same as the autocorrelation of a single rectan-
gular pulse.' And according to the Wiener-Khintchirne Theorem, the
Fourier transform of the autocorrelation function is just the
power spectrum. Hence, the power ,pectrum of the modulation wave-
form x(t) is exaccly the same as that of the pulse, which is thi

familiar (-n -).
x2

The above sutocorrelation function is not practical for
radar applications in that by Its definition, it requtires an

F-- Although we have copsidered Ca(r) only for integril r, the defia.-
Ation ]H) nay %e employed to develotn the ron, tnuout curve shown.

I1



infinite correlation time (ref 51). If the correlator integrates
for only L digits, the autocorrelation is represented as in figure
3; for a given T, the value of the finite sum could lie any-
where between the dotted lines with probability 1/2 it will lie
within the shaded region if L is large (ref 6); its expectation is
the heavy solid line, i.e., the autocorrelation function previously
computed for the limit L -co.

C(r)

+1 - - -

/\

T"-I r-+1

Figure 3. Finite integrption-tirae autocorrelation for the
fair-coin sequence.

Lytle (ref 32) has analyzed the more restricted case of
randomly chosen periodic sequences.

4.2 Pseudo-Random Sequences

There exist preassigned (and in fact periodic) sequences
having autocorrelaton properties nearly as good as those of random
sequences without the disadvantage of random fluctuations in their

16



correlation. They exhibit properties close to those that randor
sequences ikve only on the averave. For this reason, they are
called "super-random" or, more commonly, "pseudo-random."'i

The following postulates obtaining pseudo-randomnes•i
have teen often used in various combinations:

PI) In each period, the number of +1's is neorly equal
to the number of -l's.

P2) In each period, half of the runs (groups of consec-
utive digits of the same kind) are of len-th one,
one quarter are of length two, ine eighth of
length three," M of lengthi m; etc. For a
finite period, this must end somewhere, viz., at
least at the time 2 -m = I/L,.

P3 For a period of length 2P, every n-tuie appears
once per period.

P4) The ambiguity function of *he corresponding modula-
tion should have a sharp peak at the origin, r.ad be
small and uniform to some specified degree else-
where. In particular, the autocorrelation shull b6
two level:

L (
IL, T 0O

C(a) (T ak =k+,. M T 0 (21)

k=1

This autocorrelation is cyclic, unlike the pulse case previously con-
sidered; e.g., for the sequence (- - - + + - +), C (2) is computed
from the comparison of the sequence with its cyclically shifted
self:

+++ + + -- ++- +1

I--- +-+1

where represents an arbitrary division into periods. Here,

C (2) = +1 -1 -1 -1 +1 +1 -ia
=-i

iGnerally speaking, a sequence is called "random" if the method
of generation has no known properties (e.g., natural laws or pre-
fejrred initial conditions) that would cause departures from -an-
domness. h seqience is called "pseudo-random" if, regardless '
its raethoo of generation, it satislies some particular set of cri-
teria derived from the cxpcctation values of a random sequence.
As a result, a pseudo-random sequence usuýll lv appears more random
thar almost Rl random sequences of the same length.

17



and it can be verified that this particular sequence satisfies P4
but not P3:

71, r= 0 (mod 7)
C a() = f 0 (m 7) (23)

Sequences satisfying P3 are called de Bruijn sequences
(ref 9, 10, 13, 23). They satisfy P1 and P2 but do not satisfy P4
if n > 1, as will be shown later. Adding one + to the above exam-
ple forms a de Bruijn sequence of degree n 3:

P3 is now satisfied but P4 is not: C (3) -4.

A de Bruijn sequence of arbitrary degree n can be formed
by the following rule: let (a to a ) be (-) and continue the se-
quence writing a (+) whenever It does not complete an n-tuple appear-
ing earlier !;, the sequence (ref 9). Thus for n = 4, this algorithm
yields

It is not possible in general to form a sequence satisfying P4 from
a de Bruijn sequence by omitting the last ilement.

4.3 Sequences with Two-Level Autocorrelation

Only P4 :'s of direct interest for modulation aequences.
The requirement that Ca(T) be two-level has certain consequences, a
number of whii'ch will be stated I.i this section in order to give the
reader a familiarity with this class c' sequence.

Consequence I-First of all, it is obvious that for any
binary sequence, the unnormalized autocorrelation

L

Ca(T) a ka k+ A-D (24)

k=l
(or in fact any form of complete pairing, cyclic or not) consists
of L terms each of which is (+1) or (-1). and hence,

C (T) _= L (mod 2) for all T, (25)a

But the stronger statement is true for autocorrelation or any com-
plete pairing of binary sequences that

18



C (,r) - L (mod 4) for all T (26)
a

This can be seen from a simple example:

If any group of Republicans and Democrats is paired
off in any fashion against another group of the same size and
political constitution, an even number of political arguments
will ensue, equally divided between Republicans versus Democrats
and Democrats versus Republicans.

Proof: Let the number of ordered pairs of each of the
four kinds be symbolized in an obvious way: N R is the number of" " DR

Democrat-Versus-Republican pairings, etc. The number of Demo-
crats in each group is

NDD + NDR = NDD + NRD (27)

Hence, the number of disagreements is

D = NDR + NPD = 2NDR Q.E.D. (28)

and so the correlation uf oolit1•l views is congruent (mod 4) to

the size of eithe, group:

C =A- D
a

= L - 4 NDR (29)

Thus, C () L (mod 4) (30)
a

as stated.

Consequence iI-Denote by N+ the number of (+l)'s in
each period, and similariy, for N . Then,m

L

/ C (T) = L + M(L-l) (31)
La
T~lL L

\7 a a
SLk k+
T=l k=l

~L -)2

22
.L + M(L-l) = (N - N ) (ref 23) (32)

+ -



Combining this with

N + N = L (33)+

we obtain

N+ (L ± f-L + M(L-1)/2 (34)

where the signs may be taken in either order. M is invariant
under a (-ak) Also, since (L + M(L-1)) must be a square,

M > L (35)
-L-1

and hence, for L >2

M >- 1 (36)

For M = - 1,

N =N ± 1 (37)
+

These are the binary sequences most widely used for modulation.
The fact that this disparity cfore between N and N is the smal1•est
attainable for a two-level sequence with L ý 2 follows from equa-
tion (34). As P. result, no balanced sequence (N+ = N-) with period
greater than two can be two-level; in particular, no de Bruijn se-
quence except (+-) is two level.

Consequence III-If a two-level sequence is sampledevery
q digits, wnere q is prime to L, the sequence so produced is also
two-level with the same levels L and M (ref 15). This can be seen
by sampling the autocorrelation summation of the original 3equence
at the same rate, for each value of T.

Consequence IV--The corresponding sequence of (b k or 1)
also has two-level autocorrelation:

L

Ca(T) = Z (1 - 2 bk) (I - 2 bk+) (38)
k=l

= 4C b(T) + N+ - 3N_

'il _ , T =0

(M + 3N - N )/4 T 0 0
-- +

Each run of r ones contributes r to C (0): it contributes (r-l) to
C b(1). Hence the number of runs of (1) s in each period is

20



Cb (0) - C (1) =N - (M + 3N - N )/4 (.IO)

= (L - M)/4

and this must also be the number of runs of (O)'s, since the two
kinds alternate.-' Each run of (r > 1) "ones" contributes (r - 2)
to Cb (2), and each run of a single "one" contributes zero, with
the exception that at each run of a single zero, there is an extra
contribution of one. If the number yf runs of a single zero is de-

noted by OB1 and of a single one by B

C b(0) - C b(2) = 2((L - M)/4 BI) + 1. "IB -01 (41)

0B I + B1 = (L- M)/4 (42)

i.e., half of the total. number of runs of symbols of either kind are
of length one. Hence P4 guarantees the first clause of P2. No such
simple statement is possible about the other clauses of P2.

Consequence V-It is sometimes necessary to know the number
of ordered pairs of each kind of (a, a ) appearing in the C (T) sum-
mation. Denote these by N++, N_, _+nd N and let a

m = (M + 3N - N+)/4 (43)

Applying the reasoning of the political example to Cby

N = m

N = N =N -m (44)
+- -+ -

N =N -(N -im).
++ + -

Consequence VI-The autocorrelation function of a two-
level sequence is the same as that of a periodic rpetangular pulse
train except for.a possible change in d-c level. By the Wiener-
Khintchine Theorem, the power spectrum must therefore be the same
also. It is a line spectrum with envelope (sin~x/x*), and there
is a d-c value appropriate to the particular value of M.

If a sequence is used to phase-modulate a carrier, the
spectrum will be the convoluijon of the sequence spectrum and the

1 The average run length 2L/(L- M) is equal to two (the value for

a random sequence) only if M is zero.
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carrier spoctrum. This will be free of peaks (and Lhereby facil-
itAte hadng) provided the sequence has a small d-c level. Hence
for the purpose of hiding, the choice of M = -1 is optimum, since
it yields the mcst nearly balanced sequence.

In most systems built to date, the sequence period is
kept less than the least expected Doppler period, in order that
only the region of the (¶,J) plane near the T axis is accessible
to signals. In such a case, the optimum choice of M to keep jxI
small off-peak wc.,id be M = 0. Tiere is exactly one such sequence
known (4++-) (its inversions and/or rotations are not considered to
be independent). There is no known proof that longer sequences with
M = 0 do not exist, but some restrictions can be put on the possible
periods. From equa.!ons (32, 33), it follows that the period L must
be an even square:

L 4,1 n = 1, 2, 3,... (45)

Turyn has shown further that n may not be a power of a single prime:
n 4 pm, p prime. The smallest values of L remaining are 144 and 400
(n = 6 and 10, respectively)..

An additional relation for two-level sequences is derived
in Appendix A.

4.4 Shift-Register Generators

4.4.1 General Lo>gic (ref 23)

A shift-register generator (SRG), of degree n con-
sists of n flip-flopi, a clock pulse-generator, and a logic circuit,
as shown in figure 4. For each flip-flop, "off" is symbolized by

CLOCK
PULSE

GENERATOR

-)P- 
OUTPUT

LOGICý UN I T

Figure 4. The general SIG.
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(0) and "on" by (1). When the clock pulses arri, -, the contents

of each flip-flop are transferred to the next sage, as shown.

The new state of the first stage is an -.- bitrary Boolean function

of the previous content" of the register. The function specifies

a (0) or (1) as desired for each of the 211 states of the SRG;

hence, there are

22n

2

different such functions.

!f the logic is correctly chosen, the SRG ma'
produce a long sequence. The longest possible SRG sequences, for

a given n, are the de Bruijn sequenceý 11, = 2 n); it has been shown

that there are

2n-i~

different de Bruijn sequences of degree ii. As previously noted,

none of them are two-level if n > 1.

The logic uniquely specxlies the successor to

every state of a2, SRG. But although eat-h state has a unique suc-

cessor, it is possible for a state to have either zero, one, or two

predecessors. For example, consider a 3-stage SRG for which the

new state of the first stage is the ordinary arithmetic product o!

the previo.'s states of the last two stages:

The sequences oi states for this register "



Herc, (110) and (100) have no predecessors; (010) and (000) each
have two predecessors. We will return to the general SRG later.

4.4.2 Linear Logic and M-Sequences(ref 12, 14, 15, 17, 18)

Pn important subclass of SRG's consists of those
linear logic. A linear logic unit is one which computes the

sum mod 2 of the contents of whichever stages feed the unit. It can
easily he shown that every state of a linear SRG has a unique prede-
cessor, and, as a result, the SRG decomposes the space of 2n states
into a nunber of closed cycles. Since the sum mod 2 of any number
of zeroes is zero, the "all-zeroes" state always forms a separate
cycle. If the stages that are to be tappec are chosen correctly,
there is only one otier cycle, of period ( 2 n-l).

Consider a (3,5) linear SRG, which is one such
"linear-maximal" (or "linmax") SRG:

If the initial contents are 00001, the contents after successive
clock pulses will be

(inittil contents) 1) 00001

2) 10000
3) 01000
4) 00100
5) 10010

6) 01001
7) 1O10O
8) 11010
9) 01101

10) 00110

etc.

28) 10101
29) 01010

30) 00101

31) 00010
1 = 32) 00001

The sequence appearing at the output is

i= ... lOOO01001011 f)11 !i IO001 lloo Ii1...

If one (0) were added to the run of tour (0)'s the sequence would

be- a de Brulijn sequeonce. Hence, this SRG sequence almost satisfies
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Pi, P2, and P3 exactly, as it stands. But most important, i
a two-level autocorrelation:

31 =L T 17 0

Ca (T) 6 (46)
-I , [T4&

It is not difficult to prove that every linear-
maximhl sequence (called m-sequence) has a similar autocorrelation.
In the first place, a linear logic satisfies superposition: if
two Identical linear SRG's A and B have arbitrary contents, and a
third identical SRG C contains 'he sum (mod 2) of the contents of
A and B, then the output digit from C will be the sum (mod 2) of
the outputt of A and B. From this there follows an important

Shift-and-Rdd property-If an m-sequence is shiftea
by T digits (T neither zero nor a multiple of L)
nnd added to the unshifted sequence mod 2, the sum
sequence is Lhe same sequence shifted by some other
rumber of digits T', e.g., for the (3,5) sequence
a id T = 2.

, . .1000O.010Ol1l00111111000110111Ol(IOO. . .

-.. 1 00001001011001111OlO0iolo01...
• ..I0101i001llfll00-0-10 11101010000

T 28

The ddpendence of ?' on , is erratic as may be seen from the sam-
ple sequence:

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T 14 28 5 25 3 10 16 19 24 6 23 20 30 1 22

16 17 18 19 20 21 22 23 21 25 26 27 28 29 30

7 18 17 8 12 27 15 11 9 4 29 21 2 26 13

This dependence is not given completely by any krown function; its
knuwn prope...'ties are stated .in Appendix B.

Since a (01 occurs In the sum j.-equence above if and
only if the digits in the addend sequences agree, ard since there is one
more (1) than (0) in A period of an m-sequence, the auto'xorrelatlon
function must be

SL .• 0

C (,7) (47)

as we set out to .rove.
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Nothing -. ,ove guaranteei the existence of m-sequences,
but it has been shown (ref 15, 18) that there are in fact (0(211-l))/n.
m-sequences of degree n. (0 ts Euler's function: O(k) is the number
of integers less than k which are prime to k, including 1.) To find
the logic (i'e., which stages are tapped) cf these linmax SRG's is to
find the primJ~tive irreducible polynomials over the Galois field of
two elements. This computational problem has been solved with a dig-
ital computer for all linmax SRG's with n not greater than 16, and
for some SRG's of each n up to 34, and the results are listed in
Appendix C of reference 2C. Among these permissible tap combinations
are (1,2), (2,3), (3,4), (3,5), (5,6), (4,7), (4,5,6,82, (5,9),
(7)10), (9,11), (6,8,11,12), ... , (20,33), (7,32,33,34). A few
longer linmax SRG's are known, e.g.,

(126,127), 1,7,15,8091),...(2 1-2, 2 127).

Given one linmax SRG of degree n, all others of
degree n may be found from the Prime Sampling Theorem previously
stated, which in this case at least, turns out to bp exhaustive. The
output is sampled every qth digit, where q is odd and prime to L. As
soon as (2n-1) digits have been so produced, the SRG that will pro-
duce this new sequence can be constructed by solving a linear equa-
tions for the tap positions. Repeating the process produces all
linmax SRG's of degree n (ref 1;).

Another property of un-sequences that has been put
to use in FM systems (ref 25, fig. 5) is that

bk = bi+s (or (I + bi+s ) depending on the choice of origin k=l)
k=.1 (48)

where the summation is mod 2, and where s is fixed for a given sequence.

It can easily be shown that this property is true, and that s is equal
to the number of digits separating the beginning of the run of n ones
from the beginning of the run of (n-i) zeroes.

The sequence of a linmax SRG can te obtained with any
desired delay by adding (mod 2) the contents of some combination of
the n stages (ref 35). This could cbviously be veryr useful in a radar
syste•n, in order to produce reference signals with different delays.

4.5 Other Sequences with M = -1

There are two other known classes of sequences with M -- -1y
known as "Perron" (or "Legendre" or 'quadratic-residue") sequences
(ref 15, 26, 36) and "twin-prime" sequences (ref 26, 39), r-'pectively.

Perron seqdences are of period (4m-1) when this qtantity is
a prine. Their construction is illustrated by the case for m n 3.

The residues of the squares of successive integers modulo (4(3)-l ý 11)
a re
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9, 1, 4, 9, 16(mod 11) = 5, 25(mod 11) = 3, 3, 5, 9, 4, 1, 0, 1, 4,...

and the sequence is defined by

+i 1 if k is among 0, 1, 3, 4, 5 9

a k 1 otherwise, (49)

i.e.,

Except for m = 1 or 2, these sequences are not m-sequences and do
not have the shift-and-add property. This is an advantage in cer-
tain respects, as will be seen later.

Any periodic sequence can be generated by some SRG, and
in a physical system this is often the method most economica] of
components. The above sequence could be generated by any one of a
number of non-linear SRG's of n = 5 stages. (Four would be too
few because + - + + occurs twice.) However, the sequence does
not contain 21 of the 32 possible quintuplets of (+)'s and (-)Is.
If an SRG were used which decomposed the set of all quintuplets
into several closed cycles (as any linear SRG must, for example),
it would have to be started with one of the eleven legitimate
quintuplets, and if an error occurxed might jump into an incorrect
cycle composed of some of the 21 "bad" quintuplets. As previously
noted, non-linear SRG's need not generate closed cycles. This
fact can be used to generate; e.g., Perron sequences with a non-
linear SRG which avoids the above two difficulties, with each
illegitimate state (here, one of the 21 bad quintuplets) leading
back into the cycle of legitimate states.

The twin-prime sequences have period L = p(p+2) where p
and (p+2) are both prime, and are formed by a method similar to
that for Perron sequences. The twin-prime sequence for p = 3 is the
same as the (1,4) m-sequence. The p=5 sequence in bk notation is

IO110oooilllOIiilOOOOOOlolO1 COlOO

The remarkr on the generation of Perron sequerces apply also to
twin-prime sequences, of course.

-.6 Acquirable Codes

To locate a given target in range by testing every% inte-
gral value of T wouid require L tests. However, only 10og92 tests
would be needed if the target could be localized to within 1/2 L,
then to within 1/4 L, etc. The best practical solution to date i5
to use certain sequences obtained by combining shorter sequences
with relatively prime periods, so that

27



L = p Ip 2 '' Pk (50)

where Pis te period of the '. subsequence. For these codes,
at most

N = p 1 + P2 + "+ Pk (5-)

tests are needed, and on the average, only N/2. These codes have
been used in the Goldstone deep-space ranging system (ref 1, 49).

4.7 The Ambiguity Function for Sequences

If the period of the modulation waveform is not kept
small in comparison with a poppler cycl2, the output of a corre-
lator is given n~ot by the autocorrelation function but by the
full ambiguity function.

The squared magnitude of the ambiguity function for se-
quences is defined analogously to that for continuous functions:

C a a u 2 (52)CTS n I,-,uT

n

where
u = exp (277i/L) (53)

This is obviously equal to L2 at the origin and is zero elsewhere
along the Doppler frequency (s) axis. Lerner (ref 21) has computed

C for m-sequences and found

2
C = L 2 rs = 0,0 (mod L)-I-s

= 0 , T 0 (mcd L), s 4 0 (mod L) (54)

= 1 ,0 (rmod L), s E 0 (mod L)

= L + 1 elsewhere

i.e,, a peak at the origin and a plateau elsewhere cut by valleys
along the axes. This calculation uses the shift-and-add property
of n:-sequences; other (e.g., Perron) sequences with two-level auto-
correlation functions, but not having the shift-and-add property do
not in fact exhibit the same peak-fiee piateaus.

It can be shown that

SC s= L (55)
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and hence, this ambiguity function is very nearly 0ie smoothest
obtainable, i.e., has the smallest maximum value o..-peak; the only
further smoothing possible would be the lowering of the plateau
height from (L + 1) to L by sacrificing the valley along the e-axis

I'-2
S=rs L 2 j Ts m 0,0

= ) , elsewhere on the s-axis (necest~ary) (56)

- L , at the other (L2 - L) poiuts

This requires that

M = /-L (57)

and from equation (A-26).

(N - N )2 L + WL - 1.)+ -

n2 n(n - 1) (58)

i.e., (n 3 + n2 
- n) must be a perfect square. This is never the case

for 1 < n < 200, at least; and herce, there are no such "smoothest-
possible" sequences for L < 40,000.

Since moving off the ; axis implies a degradation of the
normalized ambiguity function magnitude from l/L to %L + 1 / L ; 1/
%1T for an r-sequence, it is clearly advantageous to keep the inte-
gration time (Lto) much less than one Doppler cycle. If the integra-
tor is a filter instead of some type of block integrator (one which

computes a k ak+T exactly) however, the output off-peak may be de-
1

graded in two ways. First, the infinite tail of the filter impulse
response will "remember" some input contributions extending back
over past Doppler cycles. By using a short time constant, this may
be made as small as desired. But then the second effect appears:
the off-peak autocorrelation is only constant if the integration is
a block integration extending over an integral number of sequence
periods. Thus, the output of a filter will fluctuate appreciably
unless the time constant is much longer than the sequence period.
(This effect is investigated in Appendix C.) Since the normalized
uff-peak autocorrelation (-l/L for an *-sequence) becomes better
with increasing sequence period L, it is all the more important
that the bit iime (to) be short.

5. BID" DIAGRAM OF A cYSTEM

Craig, Fishbein, and Rittenbch have described several systems
that use m-sequenca modulation (ref 24, 25, 73). Without specify-
ing the particular kind of modulation, consi'der the following
system:
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ANTENNA

OUTRV CIRCULATOR ~ -4FILTER
MO RULATOR DEIODULATOR AMPLIFIER OEMODULATOA IIIANX

G[.hERATOR SNIFTER GENERATORSRG # 2 PULSE o dg fr r bhind SRG th S 21

FM;LQ0U;NCY

GENE[RATOR

Figure 5. Block diagram of a system.

Each rotation of the continuously variable phase-shifter

causes SRG 2 to drop one digit further behind SRG 1 in the m-

sequence. The output of the RF demodulator is a Doppler signal

chopped by the m-sequence, and hence, consists of components

too high in frequency to pass any of the filters, which serve

as the integrators. When the reference code from SRG 2 has the

correct delay, the code demodulator reassembles the chopped Doppler

into an unchopped wave, which passes some filter. Range is imeas-
ured by the number of digits SRG 2 has to drop behind SRG 1 to pro-

duce a peak in the out-.ut of some filter.

The system can be altered in certain ways to utilize trans-

mitter leakage as the local oscillator. Unlike the above system,

this alteration require. a sequence with the shift-and-add property.

This version has been implemenled by Craig et al using FM and 5-

stage linmax SRG's (L = 31). They report "an over-all receiver

sensitivity of -140 dbm on slowly-moving targets." Since the sys-

tem must search serially in range, the acquisition time will be com-

paratively large.

(i. NON-BINARY CODES FOR CW

If the number of modulation states is greater than two, the

multiplication operation and the autocorrelhtion function must be
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redefined. If 0, 120, and 240 deg PM is uE the natural representa-

tion of the ak consists of the cube roots oi unity, and

Ca(T) =7 a* a (59)

a L k k4-T
k

Tn general, q states of equiangular PX, are represented by the qth roots
of unity and this autocorrelation is the natural one.

One class of perfect codes is known, of period q2 for any q
(ref 50). One period of one of these codes consists of the following

powers of s (s = exp (271!/q)):

1,2,3, ... q, 2,4,6,..., 2q, 3,6,9 .... 3q ........ ,q,2q,3qy...,q2.

For q = 3 this is the sequence

2 2SYS Ilys Isli~l~lil

The autocorrelation function is

L=q T 0
C (T) = (60)a 0 T T 0

The limitation on length, given q, is a serious disadvantage of
these sequences. Sequences of any desired length but with a poorer auto-
correlation can be obtained from multi-state SRG's. Here q may be any
power of a prime,

m
q = p , (61)

and linear SRG's are those which have a logic consisting of multiplication

by 0,1,2..., or (q-l) at each tap, followed by addition mod q. As before
there exist linmax SRG's of every length n with autocorrelation

L = q - 1 , =0

Ca (T) ' n (62)

Under addition mod q, these sequences have the shift-and-add property.
Connections for some linmax ORG's are given by the coefficients of the
primitive Irreducible polynomials in references 19 and 41; e.g., for
q - 3, reference 19 gives (x 3 

- x - 2) as a primitive irreducible poly-

nomial. The coefficients are 1,0,-i,-2, and the last three specify a
linmax SRG:
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+ X 2 .- MULTIPLICATION (MOD 3) BY E

AAD~ TION (MOD 3)

The rn-sequence produced is ... 00101211201110020212210222...

If, on the other hand, the modulation states are "off," "on ,
0 deg , an%; "on" 180 deg, the natural representation is ak = 01
+1, -1. Tompkins (ref 45) has found all of the perfect codes
of this kind for L <. 19 by trial. Fur L > 13, these have few
non-zero terms, a distinct drawback, since the average power
suffers accordingly.

Non-binary sequences have not yet been used in radar sys-
tems to the author's knowledge.
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Linear SRG's, rigorously treated - References 12, 15, 18, 20, 34.
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Multi-state sequences - References 44, 45, 49, 50.
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APPENDIX A. MESH RELATIONS FOR SEOUENCES 1IITH TWO-LEVEL AUTOCORRELATION

Let (a = 1 1) be a sequence of period L with a two- level periodic

autocorrelation. If q ie a factor of L, then the sequence can be di-
vided into q "meshes" by sampling every qth digit beginning with any
of the first q digits. We will derive relations between the sums Sqi

of the digits in the various such meshes!

Sqi = ak k i (mod q) (A-i)

k

One tool with which such a separation into meshes can be accom--

plished is exp (2i'iT/q):

L L-1

C~r) exp (27'iT/q) L • 1 + M exp (2lliT/q) (A-2)

T=l T=1

L + M(L ),q = 1

LL-M q >I

But also,

C(T) exp (2wiT/q) a a k exp ( 2 niT./q) (A-3)

T=l T=l k=l

= ak exp (-271Tik/q) L exp 127.(k+T)/q)
ex (21(+¶/q

k=i r=i

x • ak exp (-27,ik/q) I aT cxp (+2riT/q)
k T

a os(7 5'q- a -in(2,0 ) Fy~ak cos(2i'k/q)+i a~ sin(2ricM/q~i
ak co 2 k ' ) i k !2 t_ ) qk k

K 12 r12
L + M(L "ql-1) a cos(2rk/q)" a sjn(2jk/q) (A-4)

k..

where 6 is the Kronecker delta.

We now specialize this temporarily to the case M = 0. These se-
quences, which were described in section 4.3 have periods of the forni
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2 in

L=4n 2 n = 1, 2y 3,... I n j pin p prime (A-5)

2
Hence L is always divisible at least by 2, 4, n, and n 2

For q = 2, the mesh relation above yields

4n2 (22 - 21)2 (A-6)

We know alse that

q L

S = j ak = N - N= 2n (A-7)qi k + -

i=l k1l

Choosing S22 > S21 arbitrarily, we find that

2 0 (A. 9)•'21

and s22 =2n (A-9)

i.e., the first mesh of alternate digits is balanced and the second
contains the entire imbalance between N and N .i

For q = 4,

2 2 )2(AK0
4n = ($44 - S 42) + (S41 - s43 (A-10)

From the case q = 2, we have

S4 1 + S 4 3 =0 (A-11)

and S + S =2n. (A 12)
42 44

Again choosing arbitrary signs and indices wherever possible,

-SJ 3  S 4 1 = + (S42 $4 4 ) /2 (A-13)

S42 + S 44 - 2n (A-14)

with the auxiliary ('.djt ns that

- This- was first di-covered and proved by N. Karay'anis and C. A.
Morrison .I(cng with a number- of other results concerning sequences
with M = 0 that are not included here.
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is 41' < (A-15)

S4 2  > 0 (A-16)

S41 > 0 (A-17)

and

S n(mod 2) (A-18)
4i

For any n, one solution is given by

-S 43 S41 = = 42 = n (1) (A-19)

for even n, there is also the solution

s 4 1 = $ 4 2  $43 = 0; S4 2n (I1) (A-20)

These are all of the solutions except for a small number of others
that may be found straightforwardly by listing the squares of suc-
cessive composite values of S4 1 , factoring these into S 4and S4 4,
and calculating n = (S 4 2 + S41 /2. This is required to 4 be an inte-
ger and to have the same par-iy ab Si., as noted above. The only
such irregular solutions for n < 20 are

n = 10: S41 = (8, 4, -8, 16) or (6, 2, -6, 18)

n = 15: Sdi = (9, 3, -9, 27)

n = 20: S4i = (12, 4, -12, 36)

The others for n < 40 are for n = 26(2), 30(2), 34(2), 35, and 40(2).

Relations similar to the above can be written for each of the
factors of any sequence with two-level autocorrelation. The ones
above are suited to a computer search for sequences with NI = 0.
Such a search might begin by writing the admissible combinations
of lengths of runs of (+I)'s and (-1)'s from the two rules govern-
ing them; e.g., for n = 2 these are

'+1
" 5,2,2ýI

3,1,1,1I 4,3,2,1

3.3,3,1

5,3,1,1
2,2,1,1 • 4,4,1.1
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where the choice has been made that

N >N

These would then be interleaved in all possible independent ways
and each of the resulting sequences tested cyclically to see if it
obeys the mesh relations for all q dividing L. Any sequences sur-

viving this test would then be tested for two-level autocorrelation,
a considerably longer process.

We now return to tre case of general M. For some higher values

of q, the right side of the basic mesh relatioit has some coefficients
which are irrational and mutually independent; e.g., for q = 5, after
manipulation

L -M = Y 24-+ 3(S 5 1 S52 + $53 S54

-2c(2- 3($51 S52 + S53 $54)) (A-21)

+4c2 i-3( 51 S 52 + S53 S54))

whe re
c cos (217/10) = cos 36 deg

and S Sqi+j (A-22)

qj i=l

Since the lowest order polynomial equation with rational coefficients
satisfied by cos 36 deg is

83 82
8C - 8c + 1 = 0 (A--23)

2
c and c are irrational and incommensurable, and each of the last

two terms in the mesh relation must be zero. Hfenc'e

L -M=Y - (A-24)
')o 1

and

} 4 .A$ 5 1 $5 2  $5: 5 4

Using the noti., ion given by (A-22), the mesh relations ior smallvaicn•.
ot q are



q = 1: L + M(L - 1) = 0 FEq. (32)]
'-10

q = 2: L - 1 O4.. ' e.g. '*Eq. (A-6)]

q =3" L -M = 0•

q =4: L- M=•-4 e.g. [Eq. (A-10)]

q=5: L-M

£52 3 (S 5 1 S5 2 + S53 $54

q =6: L - M1=1 0+ 1- 2- 43

q 18: L - M = +4

M 142)0 2,2 2,4 '" 1 2 , 6

42,1= 42,5

Since no choice of signs or indices has been made here, all of
these relations must be obeyed cycically in the choice of se-
quence origin. The same is true of the universal auxiliary re-
lation qL

aSq- -• ak - N = (L + M(L-I))I/ 2  (A-26)

1--1 k=l
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APPENDIX B. THE SHIFT-AND-ADD RELATIONS

If an m-sequence is shifted T digits and added to the un-
shifted sequence mod 2, the result is the same sequence shifted
to T'' digits. It is necessary to know the dependence of T' on
r when designing a linmax-coded radar using the transmitter leak
age for the local oscillator (ref 25), aad for certain other pur-
poses. Here we state and illustrate r)me relations between T and

T' without proof; the proofs all proceed straightforwardly using
the matrix theory found; e.g., in reference lo.

If a shift of T digits in the addend sequence leads to a
shift of T' in the sum sequence, we write V -P T'

If

'r - T r (B 1)

then -/

Hence the relation ( -. ) is reflexive and should be written (*.-).

As a result we will symbolize T and T more symmetrically by T1 and
T2•

If

"1 '2 
(B-2)

then 2T 1 I-&2T 2 , both sides modulo L 2 n-_1.

If
Ti 1'• T2 (B-3)

then ( ) - - T)' both mod L.

If (TI, T2 ) describes a two-tap linmax SRG, then

T -o-- T2 (B-4)1 2

for the m-sequence generated by that SRG.

There is one oiter relatior which permits writing the (T,!
dependence compactly:

if

and

a rid

13



then - mdLtn4 -(T3 T(2 T I T1 (mod L) (B-5)

As a result the entire dependence given in section 4.4.2 for the (3,5)
m-sequence can be written as a 5 x 3 matrix (generally a
[2n - 2

6 2 x 3 matrix, where r j symbolizes "smallest integer not less

than.")

i 13 1I

2 26 3

4 21 6

7 9 15

L 8 11 12

where, for example,

1 1 1 + 13 = 14

13- 13 + 17 = 30

17 *- 17 + 1 = 18

and similarly for each row. Every integer from 1 to 30 appears ex-
actlv once either as an element or the sum of two elements in some row,
the rows double as in relation(B-4 and the suri of each row is 31.

The entire matrix can be written using (3-4), which in this case
reads

3 4 5

followed by alternate applications of relations (B-2) and (B-3). Thiq
is not true for larger a: the results of not more than (6n) shifts can
be obtained this way. Here this gives all 30. For larger n or for SRG'S
with more than two taps, it is necessaiy to calculpte tho results of
some shifts by actual addition of sequences. Relations (8-2) and (r-3)
still greatly reduce the labor involved, but by a factor sonk .nat le.'s
than (6n), due to short cycles.
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APPENDIX C: FILTER INTEGRATION OF M-SEQUENCES

We will treat a simple case: the RC integration of a mixer

output when the mixer inputs are both m-sequence telegraph signals.

M-SEQUENCE 
EIN R

TELEGRAPH SIGNAL - T I E

SAME SIGNAL
DELAYED T BITS L J

Figure C-1. Filter integration of an m-sequence.

As a fuiction of the history of the input voltage to the

integrator Ein the output voltago Eout is

Ft K(u-t) (u

E (t) = K Ee En(u) du (C-1)

-00

wlhere
K = 1/RC

When T = 0, Ei is dc and E _ asymptotically approaches E_ . When

T is a non-zero integer, E is the same m-sequence accord ng to the

shift-and-add property. If the sequence is (---+---) and the recent

history of Ein is (...-.+-++I--) then the integrand is as shown in

fioure C-2.

INTEGRAND

0 ,~

Figure C-2. Integrand ot equation C1.
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At the end of any bit, the integral is

-00

Eout = ( -eKto) an enKto

n=O

-(1 - e to (a 1 + e°t0 + e +

+ a_1  (e-Kto + e- (L+)Kto +

+ aLl ( -(L-)Kto + (C-2)

a_ L+ 1e0+C2

-e-zKto a enKto
Eout 1 -e-LKt° an (C-3)

Unlike the output of an L-bit block integrator (one which cnm--
L

putes a•k a k+ exactly) with the same input, this Eout is not con-
II

stant in time. If the "recent" part of the sum is a section of the
sequence containing predominantly (+)'s, the sum will be positive,
etc. Expanding the exponential,

-L+l -L+l

a= Z (a + nKt0 + .(C-4)

0 0
#nd the first term does not fluctuate; it is just

-L+1

) a - (C-5)

n=0

A crude limit on the fluctuating second term can be nade by
assuming that the "recent" half of the sum has all a equal to (-I)
and the distant half (+I).

-•+ I•2 -L+l

a n <- n + n (C-6)•_ n
0 0 -L/2

SL[/4.
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Doubling this quantity gives a pessimistic estimate of the peak-to-
peak fluctuations of the sum in E as the "recent" part of the se-
quence changes back and forth between "predominantly (+)'s and "pre-

dominantly (-)'s"as time goes by.

A much better estimate can be made by using a conjectured approx-
imate limit on the truncated autocorrelation function of an m-sequence

J
a ak < (3L/2) 1/2) j < L (C-7)

t k 1

Then
an n - n

1-d 1
w he re

d (3L/2)
1 /2

He nce n (3L/2) 1/2
n an .,s L (3/)(C-9)

For Perron sequences the limit on the truncated autocorreiatien
seems to be much smaller.
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